IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis

IFT54 调节 IFT20 稳定性,但对纤毛发生过程中的微管蛋白运输并非必需

阅读:4
作者:Xin Zhu, Yinwen Liang, Feng Gao, Junmin Pan

Abstract

Intraflagellar transport (IFT) is required for ciliogenesis by ferrying ciliary components using IFT complexes as cargo adaptors. IFT54 is a component of the IFT-B complex and is also associated with cytoplasmic microtubules (MTs). Loss of IFT54 impairs cilia assembly as well as cytoplasmic MT dynamics. The N-terminal calponin homology (CH) domain of IFT54 interacts with tubulins/MTs and has been proposed to transport tubulin during ciliogenesis, whereas the C-terminal coiled-coil (CC) domain binds IFT20. However, the precise function of these domains in vivo is not well understood. We showed that in Chlamydomonas, loss of IFT54 completely blocks ciliogenesis but does not affect spindle formation and proper cell cycle progression, even though IFT54 interacts with mitotic MTs. Interestingly, IFT54 lacking the CH domain allows proper flagellar assembly. The CH domain is required for the association of IFT54 with the axoneme but not with mitotic MTs, and also regulates the flagellar import of IFT54 but not IFT81 and IFT46. The C-terminal CC domain is essential for IFT54 to bind IFT20, and for its recruitment to the basal body and incorporation into IFT complexes. Complete loss of IFT54 or the CC domain destabilizes IFT20. ift54 mutant cells expressing the CC domain alone rescue the stability of IFT20 and form stunted flagella with accumulation of both IFT-A component IFT43 and IFT-B component IFT46, indicating that IFT54 also functions in IFT turn-around at the flagellar tip.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。