Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays

生物发光再生循环 (BRC) 系统:核酸定量分析的理论考虑

阅读:17
作者:Arjang Hassibi, Christopher Contag, Marcel O Vlad, Maryam Hafezi, Thomas H Lee, Ronald W Davis, Nader Pourmand

Abstract

A novel application of bioluminescence for nucleic acid quantification, the bioluminescence regenerative cycle (BRC), is described in theoretical terms and supported by preliminary experimental data. In the BRC system, pyrophosphate (PPi) molecules are released during biopolymerization and are counted and correlated to DNA copy number. The enzymes ATP-sulfurylase and firefly luciferase are employed to generate photons quantitatively from PPi. Enzymatic unity-gain positive feedback is implemented to amplify photon generation and to compensate for decay in light intensity by self-regulation. The cumulative total of photons can be orders of magnitude higher than in typical chemiluminescent processes. A system level theoretical model is developed, taking into account the kinetics of the regenerative cycle, contamination, and detector noise. Data and simulations show that the photon generation process achieves steady state for the time range of experimental measurements. Based on chain reaction theory, computations show that BRC is very sensitive to variations in the efficiencies of the chemical reactions involved and less sensitive to variations in the quantum yield of the process. We show that BRC can detect attomolar quantities of DNA (10(-18) mol), and that the useful dynamic range is five orders of magnitude. Sensitivity is not constrained by detector performance but rather by background bioluminescence caused by contamination by either PPi or ATP (adenosine triphosphate).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。