AG1®, a Novel Synbiotic, Maintains Gut Barrier Function following Inflammatory Challenge in a Caco-2/THP1-Blue™ Co-Culture Model

AG1® 是一种新型合生元,在 Caco-2/THP1-Blue™ 共培养模型中,在炎症刺激后仍能维持肠道屏障功能

阅读:6
作者:Philip A Sapp, Jeremy R Townsend, Trevor O Kirby, Marlies Govaert, Cindy Duysburgh, Lynn Verstrepen, Massimo Marzorati, Tess M Marshall, Ralph Esposito

Abstract

Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant interest to physically active adults and those experiencing chronic health conditions. This in vitro study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutrients) and control (control medium)] were fed separately into a human GI tract model (stomach, small intestine, and colon). In the colonic phase, the GI contents were combined with fecal inocula from three healthy human donors. GI permeability was evaluated with transepithelial electrical resistance (TEER) in a Caco-2 (apical)/THP1-Blue™ (basolateral) co-culture model. The apical side received sodium butyrate (positive control) or Caco-2 complete medium (negative control) during baseline testing. In the 24 h experiment, the apical side received colonic simulation isolates from the GI model, and the basolateral side was treated with Caco-2 complete medium, then 6 h treatment with lipopolysaccharide. TEER was assessed at 0 h and 24 h, and inflammatory markers were measured at 30 h in triplicate. Paired samples t-tests were used to evaluate endpoint mean difference (MD) for AG1 vs. control. TEER was higher for AG1 (mean ± SD: 99.89 ± 1.32%) vs. control (mean ± SD: 92.87 ± 1.22%) following activated THP1-induced damage [MD: 7.0% (p < 0.05)]. AG1 maintained TEER similar to the level of the negative control [-0.1% (p = 0.02)]. No differences in inflammatory markers were observed. These in vitro data suggest that acute supplementation with AG1 might stimulate protective effects on GI permeability. These changes may be driven by SCFA production due to the pre-/probiotic properties of AG1, but more research is needed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。