The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors

CMV 早期增强子/鸡 β 肌动蛋白 (CAG) 启动子可用于在小鼠胚胎干细胞分化为血管祖细胞期间驱动转基因表达

阅读:7
作者:Annika N Alexopoulou, John R Couchman, James R Whiteford

Background

Mouse embryonic stem cells cultured in vitro have the ability to differentiate into cells of the three germ layers as well as germ cells. The differentiation mimics early developmental events, including vasculogenesis and early angiogenesis and several differentiation systems are being used to identify factors that are important during the formation of the vascular system. Embryonic stem cells are difficult to transfect, while downregulation of promoter activity upon selection of stable transfectants has been reported, rendering the study of proteins by overexpression difficult.

Conclusion

Vectors containing the CAG promoter offer a valuable tool for the long term expression of transgenes during stem cell differentiation towards mesoderm, while the CMV and beta-actin promoters lead to very poor transgene expression during this process.

Results

CCE mouse embryonic stem cells were differentiated on collagen type IV for 4-5 days, Flk1+ mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation of vascular tubes. The activity of the CMV and beta-actin promoters was downregulated during selection of stable transfectants and during differentiation to the Flk1 stage, while the CMV immediate enhancer/beta-actin promoter in the pCAGIPuro-GFP vector led to 100% of stably transfected undifferentiated and differentiated cells expressing GFP. To further test this system we expressed syndecan-2 and -4 in these cells and demonstrated high levels of transgene expression in both undifferentiated cells and cells differentiated to the Flk1 stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。