Aldose reductase inhibition suppresses airway inflammation

醛糖还原酶抑制可抑制呼吸道炎症

阅读:7
作者:Umesh C S Yadav, Kota V Ramana, Satish K Srivastava

Abstract

Airway inflammation induced by reactive oxygen species (ROS)-mediated activation of redox-sensitive transcription factors is the hallmark of asthma, a prevalent chronic respiratory disease. In various cellular and animal models, we have recently demonstrated that, in response to multiple stimuli, aldose reductase (AKR1B1) regulates the inflammatory signals via NF-kappa B activation. Since NF-κB activation is implicated in asthma pathogenesis, we investigated whether AKR1B1 inhibition could prevent ovalbumin (Ova)- and ragweed pollen extract (RWE)-induced airway inflammation and hyper-responsiveness in mice models and tumor necrosis factor-alpha (TNF-α)-, lipopolysachharide (LPS)- and RWE-induced cytotoxic and inflammatory signals in primary human small airway epithelial cells (SAEC). Sensitization and challenge with Ova or RWE caused airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid, airway hyperresponsiveness, elevated IgE levels and release of Th2 cytokines in the airway and treatment with AKR1B1 inhibitors markedly reduced these pathological changes in mice. In SAEC, treatment with TNF-α, LPS or RWE induced apoptosis, reactive oxygen species generation, synthesis of inflammatory markers IL-6, IL-8, and PGE2 and activation of NF-κB and AP-1. Pharmacological inhibition prevented these changes suggesting that AKR1B1 mediates ROS induced inflammation in small airway epithelial cells. Our results indicate that AKR1B1 inhibitors may offer a novel therapeutic approach to treat inflammatory airway diseases such as asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。