Pancreatic Differentiation of Stem Cells Reveals Pathogenesis of a Syndrome of Ketosis-Prone Diabetes

胰腺干细胞分化揭示酮症糖尿病综合征的发病机制

阅读:4
作者:Diane Yang, Sanjeet Patel, Wojciech J Szlachcic, Jolanta Chmielowiec, Diane Scaduto, Nagireddy Putluri, Arun Sreekumar, James Suliburk, Michael Metzker, Ashok Balasubramanyam, Malgorzata Borowiak

Abstract

Genetic analysis of an adult patient with an unusual course of ketosis-prone diabetes (KPD) and lacking islet autoantibodies demonstrated a nucleotide variant in the 5'-untranslated region (UTR) of PDX1, a β-cell development gene. When differentiated to the pancreatic lineage, his induced pluripotent stem cells stalled at the definitive endoderm (DE) stage. Metabolomics analysis of the cells revealed that this was associated with leucine hypersensitivity during transition from the DE to the pancreatic progenitor (PP) stage, and RNA sequencing showed that defects in leucine-sensitive mTOR pathways contribute to the differentiation deficiency. CRISPR/Cas9 manipulation of the PDX1 variant demonstrated that it is necessary and sufficient to confer leucine sensitivity and the differentiation block, likely due to disruption of binding of the transcriptional regulator NFY to the PDX1 5'-UTR, leading to decreased PDX1 expression at the early PP stage. Thus, the combination of an underlying defect in leucine catabolism characteristic of KPD with a functionally relevant heterozygous variant in a critical β-cell gene that confers increased leucine sensitivity and inhibits endocrine cell differentiation resulted in the phenotype of late-onset β-cell failure in this patient. We define the molecular pathogenesis of a diabetes syndrome and demonstrate the power of multiomics analysis of patient-specific stem cells for clinical discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。