Assessment of ecological hazards and environmental fate of disinfectant quaternary ammonium compounds

消毒剂季铵盐化合物的生态危害及环境命运评估

阅读:6
作者:Paul C DeLeo, Carolyn Huynh, Mala Pattanayek, Katherine Clark Schmid, Nathan Pechacek

Abstract

Disinfectant quaternary ammonium compounds (Quats) have diverse uses in a variety of consumer and commercial products, particularly cleaning products. With the emergence of the COVID-19 pandemic, they have become a primary tool to inactivate the SARS-CoV-2 virus on surfaces. Disinfectant Quats have very low vapor pressure, and following the use phase of the products in which they are found, disposal is typically "down-the-drain" to wastewater treatment systems. Consequently, the potential for the greatest environmental effect is to the aquatic environment, from treated effluent, and potentially to soils, which might be amended with wastewater biosolids. Among the earliest used and still common disinfectant Quats are the alkyl dimethyl benzyl ammonium chloride (ADBAC) compounds and the dialkyl dimethyl ammonium chloride (DDAC) compounds. They are cationic surfactants often found in consumer and commercial surface cleaners. Because of their biocidal properties, disinfectant Quats are heavily regulated for human and environmental safety around the world. Consequently, there is a robust database of information regarding the ecological hazards and environmental fate of ADBAC and DDAC; however, some of the data presented are from unpublished studies that have been submitted to and reviewed by regulatory agencies (i.e., EPA and European Chemicals Agency) to support antimicrobial product registration. We summarize the available environmental fate data and the acute and chronic aquatic ecotoxicity data for freshwater species, including algae, invertebrates, fish, and plants using peer-reviewed literature and unpublished data submitted to and summarized by regulatory agencies. The lower limit of the range of the ecotoxicity data for disinfectant Quats tends to be lower than that for other surface active agents, such as nonionic or anionic surfactants. However, ecotoxicity is mitigated by environmental fate characteristics, the data for which we also summarize, including high biodegradability and a strong tendency to sorb to wastewater biosolids, sediment, and soil. As a result, disinfectant Quats are largely removed during wastewater treatment, and those residues discharged in treated effluent are likely to rapidly bind to suspended solids or sediments, thus mitigating their toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。