Lipopolysaccharides facilitate colonic motor alterations associated to the sensitization to a luminal antigen in rats

脂多糖促进大鼠结肠运动改变,与对腔内抗原的致敏有关

阅读:5
作者:Ferran Jardi, Monica Aguilera, Patri Vergara, Vicente Martinez

Aims

Enteric dysbiosis is a risk factor for dietary proteins-associated intestinal alterations, contributing to the development of food allergies and the symptomatology of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS). We explored if a dysbiotic-like state, simulated by intraperitoneal administration of bacterial lipopolysaccharides (LPS), facilitates the sensitiza-tion to a luminal antigen, ovalbumin (OVA), in rats.

Background/aims

Enteric dysbiosis is a risk factor for dietary proteins-associated intestinal alterations, contributing to the development of food allergies and the symptomatology of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS). We explored if a dysbiotic-like state, simulated by intraperitoneal administration of bacterial lipopolysaccharides (LPS), facilitates the sensitiza-tion to a luminal antigen, ovalbumin (OVA), in rats.

Conclusions

Changes in gut microbiota and/or direct effects of LPS might enhance/facilitate local neuroimmune responses to food antigens leading to motor alterations similar to those observed in IBS.

Methods

Rats were exposed to oral OVA for 1 week, alone or with LPS. Thereafter, colonic histology, goblet cell density, mucosal eosi-nophils and mucosal mast cell (MMC) and connective tissue mast cell (CTMC) were evaluated. Colonic expression (real-time quantitative polymerase chain reaction) of interleukins, IFN-α1 and integrins was assessed to determine local immune responses. Luminal and wall adhered microbiota were characterized by fluorescence in situ hybridization. Colonic contractility (in vitro) served to assess functional changes associated to OVA and/or LPS.

Results

Neither OVA nor LPS, alone or combined, lead to structural alterations, except for a reduced goblet cell density in OVA-LPS- treated rats. MMC density was unaffected, while CTMC counts increased within the submucosa of OVA-LPS-treated animals. Marginal immune activation (IFN-α1 up-regulation) was observed in OVA-LPS-treated rats. LPS induced a dysbiotic-like state characterized by decreased luminal bacterial counts, with a specific loss of clostridia. LPS facilitated Clostridium spp. wall adherence, an effect prevented by OVA. Colonic contractility was altered in OVA-LPS-treated animals, showing increased basal activity and enhanced motor responses to OVA. Conclusions: Changes in gut microbiota and/or direct effects of LPS might enhance/facilitate local neuroimmune responses to food antigens leading to motor alterations similar to those observed in IBS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。