Valproic acid attenuates intercellular adhesion molecule-1 and E-selectin through a chemokine ligand 5 dependent mechanism and subarachnoid hemorrhage induced vasospasm in a rat model

丙戊酸通过趋化因子配体 5 依赖机制和大鼠模型中蛛网膜下腔出血引起的血管痉挛减弱细胞间粘附分子-1 和 E-选择素

阅读:7
作者:Chih-Zen Chang, Shu-Chuan Wu, Chih-Lung Lin, Aij-Lie Kwan

Background

Up-regulation of regulated upon activation, normal T-cell expressed and secreted (RANTES/CCL5) and adhesion molecules is observed in the serum of animals following experimental subarachnoid hemorrhage (SAH). The present study was to examine the effect of valproic acid (VPA) on RANTES and alternation of adhesion molecules in this model.

Conclusion

VPA exerts its anti-vasospastic effect through the dual effect of inhibiting RANTES expression and reduced adhesion molecules. Besides, VPA also decreased CD45(+) cells transmigrated to the vascular wall. The administration of CCL5 significantly reversed the inhibitory effect of this compound on CD45(+) monocytes, E-selectin, and ICAM-1 level. This study also lends credence to support this compound could attenuate SAH induced adhesion molecules and neuro-inflammation in a CCL5 dependent mechanism.

Methods

A rodent SAH model was employed. Animals were randomly assigned into six groups. Basilar artery (BA) was harvested for intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin evaluation (western blotting) and RANTES (rt-PCR). 1 ng CCL5 recombinant protein intrathecal injection was performed in the VPA + SAH groups. (N = 5).

Results

Convoluted internal elastic lamina, distorted endothelial wall, and smooth muscle micro-necrosis was prominently observed in the SAH groups, which is absent in the VPA treatment and the healthy controls. Treatment with VPA dose-dependently reduced the ICAM-1, E-selectin and RANTES level, compared with the SAH group (p <0.01). The administration of CCL5 significantly increased CD45(+) glia and ICAM-1 level in the VPA treatment groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。