Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson's disease

褪黑激素可预防帕金森病慢性小鼠模型中的神经行为和线粒体缺陷

阅读:4
作者:Gaurav Patki, Yuen-Sum Lau

Abstract

Neuronal oxidative stress and mitochondrial dysfunction have been implicated in Parkinson's disease. Melatonin is a natural antioxidant and free radical scavenger that has been shown to effectively reduce cellular oxidative stress and protect mitochondrial functions in vitro. However, whether melatonin is capable of slowing down the neurodegenerative process in animal models of Parkinson's disease remains controversial. In this research, we examined long-term melatonin treatment on striatal mitochondrial and dopaminergic functions and on animal locomotor performance in a chronic mouse model of Parkinson's disease originally established in our laboratory by gradually treating C57BL/6 mice with 10 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (15 mg/kg, s.c.) and probenecid (250 mg/kg, i.p.) over five weeks. We report here that when the chronic Parkinsonian mice were pre-treated and continuously treated with melatonin (5mg/kg/day, i.p.) for 18 weeks, the defects of mitochondrial respiration, ATP and antioxidant enzyme levels detected in the striatum of chronic Parkinson's mice were fully preempted. Meanwhile, the striatal dopaminergic and locomotor deficits seen in the chronic Parkinson's mice were partially and significantly forestalled. These results imply that long-term melatonin is not only mitochondrial protective but also moderately neuronal protective in the chronic Parkinson's mice. Melatonin may potentially be effective for slowing down the progression of idiopathic Parkinson's disease and for reducing oxidative stress and respiratory chain inhibition in other mitochondrial disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。