Characterizing the efficacy of fermented wheat germ extract against ovarian cancer and defining the genomic basis of its activity

表征发酵小麦胚芽提取物对抗卵巢癌的功效并确定其活性的基因组基础

阅读:6
作者:Patricia L Judson, Entidhar Al Sawah, Douglas C Marchion, Yin Xiong, Elona Bicaku, Nadim Bou Zgheib, Hye Sook Chon, Xiaomang B Stickles, Ardeshir Hakam, Robert M Wenham, Sachin M Apte, Jesus Gonzalez-Bosquet, Dung-Tsa Chen, Johnathan M Lancaster

Conclusions

Our findings confirm the value of FWGE as a natural product with anticancer properties that may also enhance the activity of existing therapeutic agents. Furthermore, our findings provide substantial insights into the molecular basis of FWGE's effect on human cancer cells.

Methods

In this study, we investigated the activity of Avemar, a natural, nontoxic, fermented wheat germ extract (FWGE), against a range of OVCA cell lines, both alone and in combination with cisplatin chemotherapy and delineated the molecular signaling pathways that underlie FWGE activity at a genome-wide level.

Objective

Most women with advanced-stage epithelial ovarian cancer (OVCA) ultimately develop chemoresistant recurrent disease. Therefore, a great need to develop new, more active, and less toxic agents and/or to optimize the efficacy of existing agents exists.

Results

We found that FWGE exhibited significant antiproliferative effects against 12 human OVCA cell lines and potentiated cisplatin-induced apoptosis. Pearson correlation of FWGE sensitivity and gene expression data identified 2142 genes (false discovery rate < 0.2) representing 27 biologic pathways (P < 0.05) to be significantly associated with FWGE sensitivity. A parallel analysis of genomic data for 59 human cancer cell lines matched to chemosensitivity data for 2,6-dimethoxy-p-benzoquinone, a proposed active component of FWGE, identified representation of 13 pathways common to both FWGE and 2,6-dimethoxy-p-benzoquinone sensitivity. Conclusions: Our findings confirm the value of FWGE as a natural product with anticancer properties that may also enhance the activity of existing therapeutic agents. Furthermore, our findings provide substantial insights into the molecular basis of FWGE's effect on human cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。