Footer: a quantitative comparative genomics method for efficient recognition of cis-regulatory elements

页脚:一种高效识别顺式调控元件的定量比较基因组学方法

阅读:5
作者:David L Corcoran, Eleanor Feingold, Jessica Dominick, Marietta Wright, Jo Harnaha, Massimo Trucco, Nick Giannoukakis, Panayiotis V Benos

Abstract

The search for mammalian DNA regulatory regions poses a challenging problem in computational biology. The short length of the DNA patterns compared with the size of the promoter regions and the degeneracy of the patterns makes their identification difficult. One way to overcome this problem is to use evolutionary information to reduce the number of false-positive predictions. We developed a novel method for pattern identification that compares a pair of putative binding sites in two species (e.g., human and mouse) and assigns two probability scores based on the relative position of the sites in the promoter and their agreement with a known model of binding preferences. We tested the algorithm's ability to predict known binding sites on various promoters. Overall, it exhibited 83% sensitivity and the specificity was 72%, which is a clear improvement over existing methods. Our algorithm also successfully predicted two novel NF-kappaB binding sites in the promoter region of the mouse autotaxin gene (ATX, ENPP2), which we were able to verify by using chromatin immunoprecipitation assay coupled with quantitative real-time PCR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。