Altered mitochondrial function in type 2 granular corneal dystrophy

型颗粒状角膜营养不良症的线粒体功能改变

阅读:8
作者:Tae-im Kim, Hanna Kim, Doo Jae Lee, Seung-Il Choi, Sang Won Kang, Eung Kweon Kim

Abstract

Type 2 granular corneal dystrophy (GCD2) is caused by point mutation R124H in the transforming growth factor-β-induced gene (TGFBI) and is characterized by age-dependent progression of corneal deposits. Mitochondrial features in heterozygous GCD2 and normal corneal tissues was evaluated using electron microscopy. Primary corneal fibroblasts of homozygous and normal corneas were cultured to passage 4 or 8. Keratocytes of normal corneal tissue are narrow, and details of their intracellular organelles are difficult to distinguish. Keratocytes of heterozygous GCD2 tissues exhibited many degenerative mitochondria. MitoTracker and cytochrome c staining demonstrated increased mitochondrial activity in mutated cells at early passages. Decreases in depolarized mitochondria, cellular proliferation, and expression of complexes I to V and increases in apoptotic change were observed in late-passage mutant fibroblasts. PGC-1α, ANT-1, p-Akt, and p-mTOR but not NF-κB expression demonstrated a passage-dependent decrease in all cells. Increased passage- or mutation-related intracellular reactive oxygen species and delayed proliferation of methanethiosulfonate (MTS) were recovered using application of antioxidant butylated hydroxyanisole. Mitochondrial features and function were altered in mutated GCD2 keratocytes, in particular in older cells. Alteration of mitochondrial function is critical for understanding the pathogenesis of GCD2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。