Extending Remission and Reversing New-Onset Type 1 Diabetes by Targeted Ablation of Autoreactive T Cells

通过靶向消融自身反应性 T 细胞来延长缓解期并逆转新发 1 型糖尿病

阅读:5
作者:Kaitlin R Carroll, Eileen E Elfers, Joseph J Stevens, Jonathan P McNally, David A Hildeman, Michael B Jordan, Jonathan D Katz

Abstract

Preserving endogenous insulin production is clinically advantageous and remains a vital unmet challenge in the treatment and reversal of type 1 diabetes. Although broad immunosuppression has had limited success in prolonging the so-called remission period, it comes at the cost of compromising beneficial immunity. Here, we used a novel strategy to specifically deplete the activated diabetogenic T cells that drive pathogenesis while preserving not only endogenous insulin production but also protective immunity. Effector T (Teff) cells, such as diabetogenic T cells, are naturally poised on the edge of apoptosis because of activation-induced DNA damage that stresses the p53 regulation of the cell cycle. We have found that using small molecular inhibitors that further potentiate p53 while inhibiting the G2/M cell cycle checkpoint control drives apoptosis of activated T cells in vivo. When delivered at the onset of disease, these inhibitors significantly reduce diabetogenic Teff cells, prolong remission, preserve functional islets, and protect islet allografts while leaving naive, memory, and regulatory T-cell populations functionally untouched. Thus, the targeted manipulation of p53 and cell cycle checkpoints represents a new therapeutic modality for the preservation of islet β-cells in new-onset type 1 diabetes or after islet transplant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。