Miro1 functions as an inhibitory regulator of MFN at elevated mitochondrial Ca2+ levels

Miro1 在线粒体 Ca2+ 水平升高时作为 MFN 的抑制调节剂发挥作用

阅读:4
作者:Ferdinand F Fatiga, Li-Jie Wang, Tian Hsu, Jenica Irish Capuno, Chi-Yu Fu

Abstract

Mitochondria function as an integrated network that moves along the microtubules within cells and changes the morphology through membrane fusion and fission events. Mitofusin (MFN) mediates membrane tethering and subsequent fusion of the mitochondrial outer membrane. Understanding the regulatory mechanisms of MFN function is critical to tackling the pathology related to mitochondrial network imbalance. Here, we reveal a novel inhibitory mechanism of MFN-mediated fusion by mitochondrial Rho GTPase (Miro1) in response to elevated mitochondrial Ca2+ concentration ([Ca2+ ]m ). We showed that elevated [Ca2+ ]m prevents the fusion between mitochondria forming the outer membrane tether by ectopically expressing MFN. Lowering [Ca2+ ]m by treating cells with an inhibitor of mitochondrial calcium uniporter or knocking down Miro1/2 induces more fused networks. Miro1 interacts with MFN as supported by co-immunoprecipitation and protein association identified by proximity labeling proteomics. It suggests that Miro1 functions as a Ca2+ -sensor and inhibits MFN function at elevated [Ca2+ ]m. Miro1 EF-hand mutant has a compromised inhibitory effect, which reiterates Ca2+ -modulated regulation. Dysregulated Ca2+ -handling and mitochondrial network imbalance are highly relevant in the pathology of cancers, cardiovascular, and neurodegenerative diseases. Miro1 functions as a coordinated Ca2+ -responder by pausing mitochondrial transport while reducing network fusion and cooperating with Drp1-mediated fission. It likely prevents the detrimental effect of Ca2+m overload and facilitates mitophagy. Our finding reveals a novel regulation of mitochondrial network dynamics responding to [Ca2+ ]m through the interplay of Miro1 and MFN. Modulation of Miro1 and MFN interaction is a potential intervention to promote network homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。