SUMOylation attenuates the function of PGC-1alpha

SUMO化会削弱PGC-1alpha的功能

阅读:6
作者:Miia M Rytinki, Jorma J Palvimo

Abstract

Peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1alpha) is a key coordinator of gene programs in metabolism and energy homeostasis in mammals. It is highly responsive to changes in the cellular environment and physiological status of mammals and regulated by post-translational modifications: acetylation, phosphorylation, and methylation. Here, we show that PGC-1alpha is covalently modified by small ubiquitin-like modifier (SUMO) 1 protein, an important regulator of signaling and transcription. Conserved lysine residue 183 located in the activation domain of PGC-1alpha was identified as the major site of SUMO conjugation. Interestingly, the same Lys residue is also a target for acetylation. Therefore, the E185A mutation disrupting the SUMOylation consensus sequence was utilized to show that SUMOylation plays a role in the regulation of PGC-1alpha function. Our results show that SUMOylation does not have an apparent effect on the subcellular localization or the stability of PGC-1alpha, but it attenuates the transcriptional activity of the coactivator, probably by enhancing the interaction of PGC-1alpha with corepressor RIP140. Mutation that abolished the SUMOylation augments the activity of PGC-1alpha also in the context of PPARgamma-dependent transcription. Thus, our findings showing that reversible SUMOylation can adjust the activity of PGC-1alpha add a novel layer to the regulation of the coactivator.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。