Deciphering the Connection Between Microvascular Damage and Neurodegeneration in Early Diabetic Retinopathy

揭示早期糖尿病视网膜病变中微血管损伤与神经变性之间的联系

阅读:4
作者:Qian Yang, Marina Yasvoina, Abraham Olvera-Barrios, Joel Mendes, Meidong Zhu, Cathy Egan, Adnan Tufail, Marcus Fruttiger

Abstract

Diabetic retinopathy (DR), a common diabetes complication leading to vision loss, presents early clinical signs linked to retinal vasculature damage, affecting the neural retina at advanced stages. However, vascular changes and potential effects on neural cells before clinical diagnosis of DR are less well understood. To study the earliest stages of DR, we performed histological phenotyping and quantitative analysis on postmortem retinas from 10 donors with diabetes and without signs of DR (e.g., microaneurysms, hemorrhages), plus three control eyes and one donor eye with DR. We focused on capillary loss in the deeper vascular plexus (DVP) and superficial vascular plexus (SVP), and on neural retina effects. The eye with advanced DR had profound vascular and neural damage, whereas those of the 10 randomly selected donors with diabetes appeared superficially normal. The SVP was indistinguishable from those of the control eyes. In contrast, more than half of the retinas from donors with diabetes had capillary dropout in the DVP and increased capillary diameter. However, we could not detect any localized neural cell loss in the vicinity of dropout capillaries. Instead, we observed a subtle pan-retinal loss of inner nuclear layer cells in all diabetes cases (P < 0.05), independent of microvascular damage. In conclusion, our findings demonstrate a novel histological biomarker for early-stage diabetes-related damage in the human postmortem retina; the biomarker is common in people with diabetes before clinical DR diagnosis. Furthermore, the mismatch between capillary dropout and neural loss leads us to question the notion of microvascular loss directly causing neurodegeneration at the earliest stages of DR, so diabetes may affect the two readouts independently.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。