Inference of disease associations with unmeasured genetic variants by combining results from genome-wide association studies with linkage disequilibrium patterns in a reference data set

通过将全基因组关联研究的结果与参考数据集中的连锁不平衡模式相结合,推断疾病与未测量的遗传变异的关联

阅读:5
作者:David Hadley #, David P Strachan #

Abstract

Results from whole-genome association studies of many common diseases are now available. Increasingly, these are being incorporated into meta-analyses to increase the power to detect weak associations with measured single-nucleotide polymorphisms (SNPs). Imputation of genotypes at unmeasured loci has been widely applied using patterns of linkage disequilibrium (LD) observed in the HapMap panels, but there is a need for alternative methods that can utilize the pooled effect estimates from meta-analyses and explore possible associations with SNPs and haplotypes that are not included in HapMap.By a weighted average technique, we show that association results for common SNPs in an observed data set can be scaled and combined to infer the effect of a genetic variant that has been measured only in an independent reference data set. We show that the ratio p(R-1)/[1 + p(R-1)], where R is the relative risk associated with a measured or unmeasured allele of frequency p, is appropriately scaled by 1/D' and weighted in proportion to r2, both common measures of LD being derived from the reference data set.We illustrate this computationally simple method by combining the results of a genome-wide association screen from the North American Rheumatoid Arthritis Consortium with LD measures from the British 1958 Birth Cohort, and explore the validity of underlying assumptions about the generalizability of LD from one population to another, and from healthy subjects to subjects with clinical disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。