Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations

移动元素扫描 (ME-Scan) 在不同人类群体中识别出数千个新的 Alu 插入

阅读:7
作者:David J Witherspoon, Yuhua Zhang, Jinchuan Xing, W Scott Watkins, Hongseok Ha, Mark A Batzer, Lynn B Jorde

Abstract

Alu retrotransposons are the most numerous and active mobile elements in humans, causing genetic disease and creating genomic diversity. Mobile element scanning (ME-Scan) enables comprehensive and affordable identification of mobile element insertions (MEI) using targeted high-throughput sequencing of multiplexed MEI junction libraries. In a single experiment, ME-Scan identifies nearly all AluYb8 and AluYb9 elements, with high sensitivity for both rare and common insertions, in 169 individuals of diverse ancestry. ME-Scan detects heterozygous insertions in single individuals with 91% sensitivity. Insertion presence or absence states determined by ME-Scan are 95% concordant with those determined by locus-specific PCR assays. By sampling diverse populations from Africa, South Asia, and Europe, we are able to identify 5799 Alu insertions, including 2524 novel ones, some of which occur in exons. Sub-Saharan populations and a Pygmy group in particular carry numerous intermediate-frequency Alu insertions that are absent in non-African groups. There is a significant dearth of exon-interrupting insertions among common Alu polymorphisms, but the density of singleton Alu insertions is constant across exonic and nonexonic regions. In one case, a validated novel singleton Alu interrupts a protein-coding exon of FAM187B. This implies that exonic Alu insertions are generally deleterious and thus eliminated by natural selection, but not so quickly that they cannot be observed as extremely rare variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。