Treg-Specific CD226 Deletion Reduces Diabetes Incidence in NOD Mice by Improving Regulatory T-Cell Stability

Treg 特异性 CD226 缺失可通过改善调节性 T 细胞稳定性来降低 NOD 小鼠的糖尿病发病率

阅读:21
作者:Puchong Thirawatananond, Matthew E Brown, Lindsey K Sachs, Juan M Arnoletti, Wen-I Yeh, Amanda L Posgai, Melanie R Shapiro, Yi-Guang Chen, Todd M Brusko

Abstract

Costimulation serves as a critical checkpoint for T-cell activation, and several genetic variants affecting costimulatory pathways confer risk for autoimmune diseases. A single nucleotide polymorphism (rs763361) in the CD226 gene encoding a costimulatory receptor increases susceptibility to multiple autoimmune diseases, including type 1 diabetes. We previously found that Cd226 knockout protected NOD mice from disease, but the impact of CD226 on individual immune subsets remained unclear. Our prior reports implicate regulatory T cells (Tregs), as human CD226+ Tregs exhibit reduced suppressive function. Hence, we hypothesized that genomic Cd226 gene deletion would increase Treg stability and that Treg-specific Cd226 deletion would inhibit diabetes in NOD mice. Indeed, crossing NOD.Cd226-/- and a NOD Treg-lineage tracing strain resulted in decreased pancreatic Foxp3-deficient "ex-Tregs." We generated a novel Treg-conditional knockout (TregΔCd226) strain that displayed decreased insulitis and diabetes incidence. CD226-deficient pancreatic Tregs had increased expression of the coinhibitory counter-receptor T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT). Moreover, NOD splenocytes treated with TIGIT-Fc fusion protein exhibited reduced T-cell proliferation and interferon-γ production following anti-CD3/CD28 stimulation. This study demonstrates that a CD226/TIGIT imbalance contributes to Treg instability in NOD mice and highlights the potential for therapeutic targeting this costimulatory pathway to halt autoimmunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。