The roles of Tyr391 and Tyr619 in RB69 DNA polymerase replication fidelity

Tyr391 和 Tyr619 在 RB69 DNA 聚合酶复制保真度中的作用

阅读:13
作者:Agata Jacewicz, Karolina Makiela, Andrzej Kierzek, John W Drake, Anna Bebenek

Abstract

In the family-B DNA polymerase of bacteriophage RB69, the conserved aromatic palm-subdomain residues Tyr391 and Tyr619 interact with the last primer-template base-pair. Tyr619 interacts via a water-mediated hydrogen bond with the phosphate of the terminal primer nucleotide. The main-chain amide of Tyr391 interacts with the corresponding template nucleotide. A hydrogen bond has been postulated between Tyr391 and the hydroxyl group of Tyr567, a residue that plays a key role in base discrimination. This hydrogen bond may be crucial for forcing an infrequent Tyr567 rotamer conformation and, when the bond is removed, may influence fidelity. We investigated the roles of these residues in replication fidelity in vivo employing phage T4 rII reversion assays and an rI forward assay. Tyr391 was replaced by Phe, Met and Ala, and Tyr619 by Phe. The Y391A mutant, reported previously to decrease polymerase affinity for incoming nucleotides, was unable to support DNA replication in vivo, so we used an in vitro fidelity assay. Tyr391F/M replacements affect fidelity only slightly, implying that the bond with Tyr567 is not essential for fidelity. The Y391A enzyme has no mutator phenotype in vitro. The Y619F mutant displays a complex profile of impacts on fidelity but has almost the same mutational spectrum as the parental enzyme. The Y619F mutant displays reduced DNA binding, processivity, and exonuclease activity on single-stranded DNA and double-stranded DNA substrates. The Y619F substitution would disrupt the hydrogen bond network at the primer terminus and may affect the alignment of the 3' primer terminus at the polymerase active site, slowing chemistry and overall DNA synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。