Sensory perception relies on the flexible detection and interpretation of stimuli across variable contexts, conditions, and behavioral states. The basal forebrain (BF) is a hub for behavioral state regulation, supplying dense cholinergic and GABAergic projections to various brain regions involved in sensory processing. Of GABAergic neurons in the BF, parvalbumin (PV) and somatostatin (SST) subtypes serve opposing roles toward regulating behavioral states. To elucidate the role of BF circuits in sensory-guided behavior, we investigated GABAergic signaling dynamics during odor-guided decision-making in male and female mice. We used fiber photometry to record cell type-specific BF activity during an odor discrimination task and correlated temporal patterns of PV and SST neuronal activity with olfactory task performance. We found that while both PV-expressing and SST-expressing GABAergic neurons were excited during trial initiation, PV neurons were selectively suppressed by reward, whereas SST neurons were excited. Notably, chemogenetic inhibition of BF SST neurons modestly altered decision bias to favor reward seeking, while optogenetic inhibition of BF PV neurons during odor presentations improved discrimination accuracy. Together, these results suggest that the bidirectional activity of GABAergic BF neuron subtypes distinctly influence perception and decision-making during olfactory-guided behavior.
Distinct Patterns of PV and SST GABAergic Neuronal Activity in the Basal Forebrain during Olfactory-Guided Behavior in Mice.
小鼠嗅觉引导行为期间基底前脑中PV和SST GABA能神经元活动的不同模式
阅读:4
作者:Moss Elizabeth H, Tantry Evelyne K, Le Elaine, Chin Pey-Shyuan, Ambrosi Priscilla, Brandel-Ankrapp Katie L, Arenkiel Benjamin R
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 26; 45(13):e0200242025 |
| doi: | 10.1523/JNEUROSCI.0200-24.2025 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
