A versatile and highly efficient method for scarless genome editing in Escherichia coli and Salmonella enterica

一种在大肠杆菌和肠道沙门氏菌中进行无瘢痕基因组编辑的多功能高效方法

阅读:5
作者:Juhan Kim, Anthony M Webb, Jamie P Kershner, Stephen Blaskowski, Shelley D Copley

Background

Recently developed

Conclusions

The method we describe here is reliable and versatile, enabling various types of genome editing in Escherichia coli and Salmonella enterica by straightforward modifications of the mutation cassette. We provide detailed descriptions of the methods as well as designs for insertions, deletions, and introduction of point mutations.

Results

We corrected a mutation in the gene encoding I-SceI that compromised the function of a previously used Red helper plasmid. Further, we found that transcription extending into the mutation cassette interferes with cleavage by I-SceI. Addition of two transcription terminators upstream of the cleavage site dramatically increases the efficiency of genome editing. We also developed an improved method for modification of essential genes. Inclusion of a segment of the essential gene consisting of synonymous codons restores an open reading frame when the mutation cassette is integrated into the genome and decreases the frequency of recombination events that fail to incorporate the desired mutation. The optimized protocol takes only 5 days and has been 100% successful for over 100 genomic modifications in our hands. Conclusions: The method we describe here is reliable and versatile, enabling various types of genome editing in Escherichia coli and Salmonella enterica by straightforward modifications of the mutation cassette. We provide detailed descriptions of the methods as well as designs for insertions, deletions, and introduction of point mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。