A semi-automated machine learning-aided approach to quantitative analysis of centrosomes and microtubule organization.

一种利用半自动化机器学习辅助方法对中心体和微管组织进行定量分析的方法

阅读:11
作者:Sankaran Divya Ganapathi, Stemm-Wolf Alexander J, McCurdy Bailey L, Hariharan Bharath, Pearson Chad G
Microtubules (MTs) promote important cellular functions including migration, intracellular trafficking, and chromosome segregation. The centrosome, comprised of two centrioles surrounded by the pericentriolar material (PCM), is the cell's central MT-organizing center. Centrosomes in cancer cells are commonly numerically amplified. However, the question of how the amplification of centrosomes alters MT organization capacity is not well studied. We developed a quantitative image-processing and machine learning-aided approach for the semi-automated analysis of MT organization. We designed a convolutional neural network-based approach for detecting centrosomes, and an automated pipeline for analyzing MT organization around centrosomes, encapsulated in a semi-automatic graphical tool. Using this tool, we find that breast cancer cells with supernumerary centrosomes not only have more PCM protein per centrosome, which gradually increases with increasing centriole numbers, but also exhibit expansion in PCM size. Furthermore, cells with amplified centrosomes have more growing MT ends, higher MT density and altered spatial distribution of MTs around amplified centrosomes. Thus, the semi-automated approach developed here enables rapid and quantitative analyses revealing important facets of centrosomal aberrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。