A semi-automated machine learning-aided approach to quantitative analysis of centrosomes and microtubule organization.

一种利用半自动化机器学习辅助方法对中心体和微管组织进行定量分析的方法

阅读:6
作者:Sankaran Divya Ganapathi, Stemm-Wolf Alexander J, McCurdy Bailey L, Hariharan Bharath, Pearson Chad G
Microtubules (MTs) promote important cellular functions including migration, intracellular trafficking, and chromosome segregation. The centrosome, comprised of two centrioles surrounded by the pericentriolar material (PCM), is the cell's central MT-organizing center. Centrosomes in cancer cells are commonly numerically amplified. However, the question of how the amplification of centrosomes alters MT organization capacity is not well studied. We developed a quantitative image-processing and machine learning-aided approach for the semi-automated analysis of MT organization. We designed a convolutional neural network-based approach for detecting centrosomes, and an automated pipeline for analyzing MT organization around centrosomes, encapsulated in a semi-automatic graphical tool. Using this tool, we find that breast cancer cells with supernumerary centrosomes not only have more PCM protein per centrosome, which gradually increases with increasing centriole numbers, but also exhibit expansion in PCM size. Furthermore, cells with amplified centrosomes have more growing MT ends, higher MT density and altered spatial distribution of MTs around amplified centrosomes. Thus, the semi-automated approach developed here enables rapid and quantitative analyses revealing important facets of centrosomal aberrations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。