Analysis of Beta-Dystroglycan in Different Cell Models of Senescence.

不同衰老细胞模型中β-肌营养不良蛋白聚糖的分析

阅读:8
作者:Jimenez-Gutierrez Guadalupe Elizabeth, Zavaleta-Vásquez Tania Ivette, Lizcano-Meneses Jessica Alexandra, Garcia-Aguirre Ian Alain, Laredo-Cisneros Marco Samuel, Magaña Jonathan J, Winder Steve J, Cordero-Martínez Joaquín, Cisneros Bulmaro
The functional diversity of β-dystroglycan is attributable to its dual distribution, the plasma membrane, and the nucleus. In the plasma membrane, β-DG is a component of the dystrophin-associated protein complex. In the nucleus, β-DG assembles with the nuclear lamina and emerin. Recent findings indicate a role for β-DG in senescence, as its knockout in C2C12 myoblasts induces genomic instability and promotes the senescent state. This study analyzed the behavior of β-DG in three distinct models of senescence: chronologically aged fibroblasts, sodium butyrate (NaBu)-induced senescent fibroblasts, and fibroblasts from a Hutchinson-Gilford progeria syndrome (HGPS) patient. β-DG was found mainly in the nucleus in all the senescent cell types, with a certain mislocalization to the cytoplasm in HGPS and NaBu-treated fibroblasts. Furthermore, the full-length β-DG (43 kDa) and the cleaved intracellular domain (ICD; ~26 kDa) were identified. The ICD level increased in aged fibroblasts, but its yield was poor or virtually nonexistent in NaBU-induced and HGPS fibroblasts, respectively. Remarkably, β-DG was sequestered by progerin in HGPS cells, hindering its interaction with lamin A. In summary, the observed alterations in β-DG may be associated with the senescent state, and such findings will serve for future studies aimed at elucidating its role in senescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。