Retinoic acid (RA) is a transcriptional control agent that regulates several aspects of eye development including invagination of the optic vesicle to form the optic cup, although a target gene for this role has not been previously identified. As loss of RA synthesis in Rdh10 knockout embryos affects the expression levels of thousands of genes, a different approach is needed to identity genes that are directly regulated by RA. Here, we combined ChIP-seq for epigenetic marks with RNA-seq on eye tissue from wild-type embryos and Rdh10-/- embryos that exhibit failure in optic cup formation. We identified a small number of genes with decreased expression when RA is absent that also have decreased presence of a nearby epigenetic gene activation mark (H3K27ac). One such gene was Alx1 that also has an RA response element (RARE) located near the RA-regulated H3K27ac mark, providing strong evidence that RA directly activates Alx1. In situ hybridization studies showed that Rdh10-/- embryos exhibit a large decrease in eye Alx1 expression. CRISPR/Cas9 knockout of Alx1 resulted in a defect in optic cup formation, thus demonstrating that RA directly activates Alx1 in order to stimulate this stage of eye development.
Retinoic acid-regulated epigenetic marks identify Alx1 as a direct target gene required for optic cup formation.
视黄酸调控的表观遗传标记表明 Alx1 是视杯形成所需的直接靶基因
阅读:6
作者:Berenguer Marie, Duester Gregg
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 25 |
| doi: | 10.1101/2025.06.24.661406 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
