Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.
Novel isoforms of Dlg are fundamental for neuronal development in Drosophila.
Dlg 的新型亚型对果蝇神经元发育至关重要
阅读:4
作者:Mendoza Carolina, OlguÃn Patricio, Lafferte Gabriela, Thomas Ulrich, Ebitsch Susanne, Gundelfinger Eckart D, Kukuljan Manuel, Sierralta Jimena
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2003 | 起止号: | 2003 Mar 15; 23(6):2093-101 |
| doi: | 10.1523/JNEUROSCI.23-06-02093.2003 | 种属: | Drosophila |
| 研究方向: | 发育与干细胞、神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
