Background/Objectives: Kynurenine aminotransferase II (KAT-II) is a target for treating several diseases characterized by an excess of kynurenic acid (KYNA). Although KAT-II inactivators are available, they often lead to adverse side effects due to their irreversible inhibition mechanism. This study aimed to identify potent and safe inhibitors of KAT-II using computational and in vitro approaches. Methods: Virtual screening, MM/GBSA, and molecular dynamics simulations were conducted to identify the top drug candidates, followed by kinetic measurements and in vitro cytotoxicity evaluation. Results: The study showed that two compounds, herbacetin and (-)-Epicatechin exhibited the best scores. Their Glide docking scores are -8.66 kcal/mol and -8.16 kcal/mol, respectively, and their MM/GBSA binding energies are -50.30 kcal/mol and -51.35 kcal/mol, respectively. These scores are superior to those of the standard inhibitor, PF-04859989, which has docking scores of -7.12 kcal/mol and binding energy of -38.41 kcal/mol. ADMET analysis revealed that the selected compounds have favorable pharmacokinetic parameters, moderate bioavailability, and a safe toxicity profile, which supports their potential use. Further, the kinetic study showed that herbacetin and (-)-Epicatechin are reversible KAT-II inhibitors and exhibit a competitive inhibition mechanism. Their half-maximal inhibitory concentrations (IC50) are 5.98 ± 0.18 µM and 8.76 ± 0.76 µM, respectively. The MTT assay for cell toxicity indicated that the two compounds do not affect HepG2 cell viability at the necessary concentration for KAT-II inhibition. Conclusions: These results suggest that herbacetin and (-)-Epicatechin are suitable for KAT-II inhibition and are promising candidates for further development of KAT-II inhibitors.
Identification of Two Flavonoids as New and Safe Inhibitors of Kynurenine Aminotransferase II via Computational and In Vitro Study.
通过计算和体外研究鉴定出两种黄酮类化合物是犬尿氨酸氨基转移酶 II 的新型安全抑制剂
阅读:3
作者:Rebai Redouane, Jasmin Luc, Boudah Abdennacer
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jan 10; 18(1):76 |
| doi: | 10.3390/ph18010076 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
