SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress

SIRT5 缺乏会抑制线粒体 ATP 生成,并促进 AMPK 激活以应对能量压力

阅读:6
作者:Mengli Zhang, Jian Wu, Renqiang Sun, Xiaoting Tao, Xiaoxia Wang, Qi Kang, Hui Wang, Lei Zhang, Peng Liu, Jinye Zhang, Yukun Xia, Yuzheng Zhao, Yi Yang, Yue Xiong, Kun-Liang Guan, Yunzeng Zou, Dan Ye

Abstract

Sirtuin 5 (SIRT5) is a member of the NAD+-dependent sirtuin family of protein deacylase that catalyzes removal of post-translational modifications, such as succinylation, malonylation, and glutarylation on lysine residues. In light of the SIRT5's roles in regulating mitochondrion function, we show here that SIRT5 deficiency leads to suppression of mitochondrial NADH oxidation and inhibition of ATP synthase activity. As a result, SIRT5 deficiency decreases mitochondrial ATP production, increases AMP/ATP ratio, and subsequently activates AMP-activated protein kinase (AMPK) in cultured cells and mouse hearts under energy stress conditions. Moreover, Sirt5 knockout attenuates transverse aortic constriction (TAC)-induced cardiac hypertrophy and cardiac dysfunction in mice, which is associated with decreased ATP level, increased AMP/ATP ratio and enhanced AMPK activation. Our study thus uncovers an important role of SIRT5 in regulating cellular energy metabolism and AMPK activation in response to energy stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。