Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by a lac operon system.

利用乳糖操纵子系统鉴定肠道特异性启动子并诱导哺乳动物细胞中细菌α-半乳糖苷酶的表达

阅读:4
作者:Ya-Feng Zhai, Gang Shu, Xiao-Tong Zhu, Zhi-Qi Zhang, Xia-Jing Lin, Song-Bo Wang, Li-Na Wang, Yong-Liang Zhang, Qing-Yan Jiang
BACKGROUND: α-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as α-galactoside) in feed. Intestine-specific and substrate inducible expression of α-galactosidase would be highly beneficial for transgenic animal production. METHODS: To achieve the intestine-specific and substrate inducible expression of α-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of α-galactosidase expression and enzyme activity by isopropyl β-D-1-thiogalactopyranoside (IPTG) and an α-galactosidase substrate, α-lactose.We declared that the research carried out on human (Zhai Yafeng) was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. RESULTS: The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P < 0.05) luciferase activity by approximately 6.5-fold and reduced the percentage of cells expressing green fluorescent protein (GFP) by approximately 2-fold. In addition, the expression level of α-galactosidase mRNA was decreased by 6-fold and α-galactosidase activity was reduced by 8-fold. In line with our expectations, IPTG and α-lactose supplementation reversed (P < 0.05) the inhibition and produced a 5-fold increase of luciferase activity, an 11-fold enhancement in the percentage of cells with GFP expression and an increase in α-galactosidase mRNA abundance (by about 5-fold) and α-galactosidase activity (by about 7-fold). CONCLUSIONS: We have successfully constructed a high specificity inducible lac operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。