Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.
A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.
一种快速、高效、经济的农杆菌介导的活洋葱表皮植物体内瞬时转化方法
阅读:4
作者:Xu Kedong, Huang Xiaohui, Wu Manman, Wang Yan, Chang Yunxia, Liu Kun, Zhang Ju, Zhang Yi, Zhang Fuli, Yi Liming, Li Tingting, Wang Ruiyue, Tan Guangxuan, Li Chengwei
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2014 | 起止号: | 2014 Jan 8; 9(1):e83556 |
| doi: | 10.1371/journal.pone.0083556 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
