Plants are low-cost bioreactors for the production of various biopharmaceuticals including oral vaccines. Plant-derived oral vaccines are potentially useful in combating viral infections involving mucosal immunity. Transgenic plants have been generated to successfully produce mucosal vaccines against cholera, hepatitis B, foot-and-mouth disease, and Norwalk virus. As a first step toward the generation of oral vaccines against the severe acute respiratory syndrome coronavirus (SARS-CoV), we have expressed a recombinant S1 protein of the SARS-CoV in transformed tobacco. Since plant transformation and regeneration of stable transformants require considerable time, we initially used a green fluorescent protein (GFP) to tag the antigen in transient expression. GFP was fused to the carboxy-terminus of S1 for expression of S1-GFP to show expression of recombinant S1 by agroinfiltration of tobacco leaves. The GFP tag enables a relatively quick confirmation of antigen expression in plant cells by fluorescent microscopy. Such analysis using GFP that precedes stable plant transformation will enable the rapid screening of multiple constructs to attain optimal recombinant protein expression. Furthermore, this approach determines the subcellular localization of the recombinant protein in plant cells, providing information on optimal subcellular targeting for production in plant bioreactors.
Use of GFP to investigate expression of plant-derived vaccines.
利用 GFP 研究植物源疫苗的表达
阅读:4
作者:Li Hong-Ye, Chye Mee-Len
| 期刊: | Methods in Molecular Biology | 影响因子: | 0.000 |
| 时间: | 2009 | 起止号: | 2009;515:275-85 |
| doi: | 10.1007/978-1-59745-559-6_19 | 靶点: | GFP |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
