Caveolin-1 alters Ca(2+) signal duration through specific interaction with the G alpha q family of G proteins.

Caveolin-1 通过与 G α q 家族 G 蛋白的特异性相互作用来改变 Ca(2+) 信号持续时间

阅读:4
作者:Sengupta Parijat, Philip Finly, Scarlata Suzanne
Caveolae are membrane domains having caveolin-1 (Cav1) as their main structural component. Here, we determined whether Cav1 affects Ca(2+) signaling through the Galpha(q)-phospholipase-Cbeta (PLCbeta) pathway using Fischer rat thyroid cells that lack Cav1 (FRTcav(-)) and a sister line that forms caveolae-like domains due to stable transfection with Cav1 (FRTcav(+)). In the resting state, we found that eCFP-Gbetagamma and Galpha(q)-eYFP are similarly associated in both cell lines by Forster resonance energy transfer (FRET). Upon stimulation, the amount of FRET between Galpha(q)-eYFP and eCFP-Gbetagamma remains high in FRTcav(-) cells, but decreases almost completely in FRTcav(+) cells, suggesting that Cav1 is increasing the separation between Galpha(q)-Gbetagamma subunits. In FRTcav(-) cells overexpressing PLCbeta, a rapid recovery of Ca(2+) is observed after stimulation. However, FRTcav(+) cells show a sustained level of elevated Ca(2+). FRET and colocalization show specific interactions between Galpha(q) and Cav1 that increase upon stimulation. Fluorescence correlation spectroscopy studies show that the mobility of Galpha(q)-eGFP is unaffected by activation in either cell type. The mobility of eGFP-Gbetagamma remains slow in FRTcav(-) cells but increases in FRTcav(+) cells. Together, our data suggest that, upon stimulation, Galpha(q)(GTP) switches from having strong interactions with Gbetagamma to Cav1, thereby releasing Gbetagamma. This prolongs the recombination time for the heterotrimer, thus causing a sustained Ca(2+) signal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。