Mass spectrometry-based top-down proteomics for proteoform profiling of protein coronas.

基于质谱的自上而下蛋白质组学方法用于蛋白质冠的蛋白质组学分析

阅读:17
作者:Sadeghi Seyed Amirhossein, Fang Fei, Tabatabaeian Nimavard Reyhane, Wang Qianyi, Zhu Guijie, Saei Amir Ata, Sun Liangliang, Mahmoudi Morteza
The protein corona is a layer of biomolecules-primarily proteins-that adsorbs to nanoparticle (NP) surfaces in biological fluids. If the purpose of the NP is therapeutic, this can have a profound effect on its biological activity and function in vivo. Protein corona formation can also be exploited for diagnostic purposes and to differentially enrich proteins for biomarker discovery. For all of these applications, it is useful to determine which proteins, and which specific proteoforms, bind to different types of NP. The traditional mass spectrometry (MS)-based bottom-up proteomics does not accurately identify specific proteoforms within the protein corona. This limitation impedes the nanomedicine field's ability to precisely predict the biological fate and pharmacokinetics of nanomedicines and their effectiveness in early-stage biomarker discovery and disease detection because many different proteoforms of the same gene could exist in the corona, and they have divergent biological functions. Here, we describe how to use capillary zone electrophoresis (CZE)-MS-based top-down proteomics to characterize the proteoform landscape of the protein corona. Our procedures detail the recovery of intact proteoforms from NP surfaces by using detergent-assisted proteoform elution and the measurement of these proteoforms by using CZE-tandem MS (MS/MS) and CZE-high-field asymmetric waveform ion mobility spectrometry (FAIMS)-MS/MS. The entire workflow is completed within 3-4 d. Using this protocol, hundreds of proteoforms from the protein corona of polystyrene NPs can be identified. Distinct protein corona proteoform profiles were observed from NPs with different physicochemical properties. The addition of FAIMS is beneficial for more in-depth proteoform characterization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。