Mass spectrometry-based top-down proteomics for proteoform profiling of protein coronas.

基于质谱的自上而下蛋白质组学方法用于蛋白质冠的蛋白质组学分析

阅读:10
作者:Sadeghi Seyed Amirhossein, Fang Fei, Tabatabaeian Nimavard Reyhane, Wang Qianyi, Zhu Guijie, Saei Amir Ata, Sun Liangliang, Mahmoudi Morteza
The protein corona is a layer of biomolecules-primarily proteins-that adsorbs to nanoparticle (NP) surfaces in biological fluids. If the purpose of the NP is therapeutic, this can have a profound effect on its biological activity and function in vivo. Protein corona formation can also be exploited for diagnostic purposes and to differentially enrich proteins for biomarker discovery. For all of these applications, it is useful to determine which proteins, and which specific proteoforms, bind to different types of NP. The traditional mass spectrometry (MS)-based bottom-up proteomics does not accurately identify specific proteoforms within the protein corona. This limitation impedes the nanomedicine field's ability to precisely predict the biological fate and pharmacokinetics of nanomedicines and their effectiveness in early-stage biomarker discovery and disease detection because many different proteoforms of the same gene could exist in the corona, and they have divergent biological functions. Here, we describe how to use capillary zone electrophoresis (CZE)-MS-based top-down proteomics to characterize the proteoform landscape of the protein corona. Our procedures detail the recovery of intact proteoforms from NP surfaces by using detergent-assisted proteoform elution and the measurement of these proteoforms by using CZE-tandem MS (MS/MS) and CZE-high-field asymmetric waveform ion mobility spectrometry (FAIMS)-MS/MS. The entire workflow is completed within 3-4 d. Using this protocol, hundreds of proteoforms from the protein corona of polystyrene NPs can be identified. Distinct protein corona proteoform profiles were observed from NPs with different physicochemical properties. The addition of FAIMS is beneficial for more in-depth proteoform characterization.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。