Carbon nanotubes (CNTs) are often used as conductive fillers in composite materials, but electrical conductivity is limited by the maximum filler concentration that is necessary to maintain composite structures. This paper presents further improvement in electrical conductivity by precipitating gold nanoparticles onto CNTs. In our composites, the concentrations of CNTs and poly (vinyl acetate) were respectively 60 and 10 vol%. Four different gold concentrations, 0, 10, 15, or 20 vol% were used to compare the influence of the gold precipitation on electrical conductivity and thermopower of the composites. The remaining portion was occupied by poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), which de-bundled and stabilized CNTs in water during synthesis processes. The concentrations of gold nanoparticles are below the percolation threshold of similar composites. However, with 15-vol% gold, the electrical conductivity of our composites was as high as â¼6Ã10(5) S/m, which is at least â¼500% higher than those of similar composites as well as orders of magnitude higher than those of other polymer composites containing CNTs and gold particles. According to our analysis with a variable range hopping model, the high conductivity can be attributed to gold doping on CNT networks. Additionally, the electrical properties of composites made of different types of CNTs were also compared.
Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites.
高掺杂金纳米粒子的碳纳米管及其对纳米复合材料电导率和热电势的影响
阅读:3
作者:Choi Kyungwho, Yu Choongho
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2012 | 起止号: | 2012;7(9):e44977 |
| doi: | 10.1371/journal.pone.0044977 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
