Background/Objectives: Previous studies have shown varying efficacy of high-fiber diets containing different ingredients in abdominal aortic aneurysms (AAAs). This study aimed to identify which high-fiber diet protects against AAA in mice and elucidate the underlying mechanisms. Methods: This study compared inulin, cellulose, and chow diets in terms of their impact on aneurysm enlargement, elastin degradation, matrix metalloproteinase 2 and 9 expressions, CD3+ T cell and CD68+ macrophage infiltration, and macrophage differentiation. It also examined gut microbiota composition, focusing on Akkermansia, and evaluated intestinal barrier function and systemic inflammatory response. Results: The inulin diet, but not the cellulose diet, compared with the chow diet, reduced aneurysm enlargement, elastin degradation, matrix metalloproteinase 2 and 9 expressions, CD3+ T cell and CD68+ macrophage infiltration, and skewed macrophage towards M2 differentiation. The inulin diet enriched Akkermansia in both the small and large intestine. The inulin diet also enhanced the intestinal barrier by augmenting goblet cells, upregulating the gene related to the epithelial barrier and antibacterial peptides in the small intestine, and reducing circulating lipopolysaccharide and interleukin-1β levels. The inulin diet lowered the proportion of Ly6Chi monocytes and C-C chemokine receptor 2 expression on these cells in the bone marrow, reducing aneurysm infiltration. Administering Akkermansia to AAA mice decreased intestinal permeability and mitigated AAA. Conclusions: A diet rich in fermentable fiber inulin, as opposed to cellulose, alleviates AAA in mice. This beneficial effect is attributed to the enhanced presence of Akkermansia bacteria and improvement of the intestinal barrier.
Inulin Diet Alleviates Abdominal Aortic Aneurysm by Increasing Akkermansia and Improving Intestinal Barrier.
菊粉饮食通过增加阿克曼菌和改善肠道屏障来缓解腹主动脉瘤
阅读:5
作者:Guo Shuang, Yang Fen, Zhang Jiyu, Liao Yuhan, Xia Ni, Tang Tingting, Wang Chaolong, Wang Qing K, Chen Chen, Hu Desheng, Shan Zhilei, Cheng Xiang
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 9; 13(4):920 |
| doi: | 10.3390/biomedicines13040920 | 研究方向: | 肿瘤 |
| 疾病类型: | 动脉瘤 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
