Annulus fibrosus (AF) injuries can lead to substantial deterioration of intervertebral disc (IVD) which characterizes degenerative disc disease (DDD). However, treatments for AF repair/regeneration remain challenging due to the intrinsic heterogeneity of AF tissue at cellular, biochemical, and biomechanical levels. In this study, we isolated and characterized a sub-population of cells from rabbit AF tissue which formed colonies in vitro and could self-renew. These cells showed gene expression of typical surface antigen molecules characterizing mesenchymal stem cells (MSCs), including CD29, CD44, and CD166. Meanwhile, they did not express negative markers of MSCs such as CD4, CD8, and CD14. They also expressed Oct-4, nucleostemin, and SSEA-4 proteins. Upon induced differentiation they showed typical osteogenesis, chondrogenesis, and adipogenesis potential. Together, these AF-derived colony-forming cells possessed clonogenicity, self-renewal, and multi-potential differentiation capability, the three criteria characterizing MSCs. Such AF-derived stem cells may potentially be an ideal candidate for DDD treatments using cell therapies or tissue engineering approaches.
Identification of rabbit annulus fibrosus-derived stem cells.
兔纤维环来源干细胞的鉴定
阅读:4
作者:Liu Chen, Guo Qianping, Li Jun, Wang Shenghao, Wang Yibin, Li Bin, Yang Huilin
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2014 | 起止号: | 2014 Sep 26; 9(9):e108239 |
| doi: | 10.1371/journal.pone.0108239 | 种属: | Rabbit |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
