A mathematical model describing glucose-dependent pH swelling and insulin release is developed for pH-sensitive cationic hydrogels in which glucose oxidase and catalase have been immobilized and insulin imbibed. Glucose based swelling and insulin release are simulated for intravenously injected particles at various design conditions. The effects of particle size, the number of injected particles, insulin loading, enzyme loading, monomer functional group loading and pK(a), and hydrogel crosslinking ratio on insulin release and glucose sensitivity are investigated in order to optimally design the device for use. Increased insulin infusion is shown to result from increasing the number of circulating gels, increasing the collapsed particle size, or by decreasing the crosslinking ratio of the system. Release duration is shown to be dependent only upon the particle size and the achievable diffusion coefficient of the system. Glucose sensitivity, as measured by gluconic acid production and by the system pH, are functions of glucose oxidase loading and the concentration and pK(a) of the monomer used in the hydrogel.The necessarily submicron particle size results in very rapid device insulin depletion. When the device is designed without considering constraints, the resulting release profile resembles that of an on/off switching mechanism. Future work will focus on simulations of swelling and release when the device is implanted in an alternative administration site.
In Vivo Simulations of the Intravenous Dynamics of Submicron Particles of pH-Responsive Cationic Hydrogels in Diabetic Patients.
糖尿病患者体内 pH 响应阳离子水凝胶亚微米颗粒静脉动力学的体内模拟
阅读:6
作者:Farmer Terry G Jr, Edgar Thomas F, Peppas Nicholas A
| 期刊: | Industrial & Engineering Chemistry Research | 影响因子: | 3.900 |
| 时间: | 2008 | 起止号: | 2008 Dec 17; 47(24):10053-10063 |
| doi: | 10.1021/ie070957b | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
