LC-MS/MS-based serum proteomics reveals a distinctive signature in a rheumatoid arthritis mouse model after treatment with mesenchymal stem cells.

基于 LC-MS/MS 的血清蛋白质组学揭示了间充质干细胞治疗后类风湿性关节炎小鼠模型中的独特特征

阅读:5
作者:Jung Namhee, Park Soyoung, Kong TaeHo, Park Hwanhee, Seo Woo Min, Lee Seunghee, Kang Kyung-Sun
Mesenchymal stem cells (MSCs) are known to be able to modulate immune responses, possess tissue-protective properties, and exhibit healing capacities with therapeutic potential for various diseases. The ability of MSCs to secrete various cytokines and growth factors provides new insights into autoimmune-diseases such as rheumatoid arthritis (RA). RA is a systemic autoimmune disease that affects the lining of synovial joints, causing stiffness, pain, inflammation, and joint erosion. In recent years, MSCs-based therapies have been widely proposed as promising therapies in the treatment of RA. However, the mechanism involved in disease-specific therapeutic effects of MSCs on RA remains unclear. To clarify the mechanism involved in effects of MSCs on RA, proteomic profiling was performed using an RA mouse model before and after treatment with MSCs. In this study, treatment efficacy of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) was confirmed using a type II collagen-induced arthritis (CIA) mouse model. Results of measuring incidence rates of arthritis and clinical arthritis index (CAI) revealed that mice administrated with hUCB-MSCs had a significant reduction in arthritis severity. Proteins that might affect disease progression and therapeutic efficacy of hUCB-MSC were identified through LC-MS/MS analysis using serum samples. In addition, L-1000 analysis was performed for hUCB-MSC culture medium. To analysis data obtained from LC-MS/MS and L-1000, tools such as ExDEGA, MEV, and DAVID GO were used. Results showed that various factors secreted from hUCB-MSCs might play roles in therapeutic effects of MSCs on RA, with platelet activation possibly playing a pivotal role. Results of this study also suggest that SERPINE1 and THBS1 among substances secreted by hUCB-MSC might be key factors that can inhibit platelet activation. This paper is expected to improve our understanding of mechanisms involved in treatment effects of stem cells on rheumatoid arthritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。