Global Lactylome Reveals Lactylation-Dependent Mechanisms Underlying CXC Motif Chemokine Ligand 12 Expression in Pulmonary Endothelium During Acute Respiratory Distress Syndrome.

全球乳糖组学揭示了急性呼吸窘迫综合征期间肺内皮细胞中 CXC 基序趋化因子配体 12 表达的乳糖依赖性机制

阅读:8
作者:Liu Xu, Wang Haofei, Ni Weijie, Dong Xuecheng, Zheng Mingzhu, Chang Wei
Acute respiratory distress syndrome (ARDS) is a life-threatening condition affecting millions of people worldwide. The severity of ARDS is associated with the dysfunction of pulmonary endothelial cells (PECs). Metabolic reprogramming is characterized by enhanced glycolysis and lactate accumulation, which play a critical role in this process. Here, we showed that lactate levels in the lungs of patients with ARDS were associated with disease severity and prognosis. Lactate promoted PEC dysfunction and drove experimental ARDS progression via lysine lactylation (Klac), a recently described posttranslational modification. Suppression of lactate-induced lactylation mitigated the development of ARDS and inhibited the release of chemokines, particularly CXC motif chemokine ligand 12 (CXCL12), from PECs. Through quantitative lactylome analysis, we identified hyperlactylation at K193 of Enolase 1 (Eno1), a glycolytic enzyme with RNA-binding capacity, as a previously unknown mechanism promoting CXCL12 production in PECs. Under homeostatic conditions, Eno1 could bind and inhibit the translation of CXCL12 mRNA, whereas increased glycolysis and accumulated lactate drove K193 hyperlactylation of Eno1 to release CXCL12 mRNA for accelerated translation. In addition, K193 hyperlactylation enhanced Eno1 enzymatic activity, further amplifying glycolysis. These findings establish Klac as a link between glycolytic reprogramming and PEC dysfunction, offering a new therapeutic target for ARDS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。