Molecular genetic testing and cohort analysis of 32 twin pairs with neurodevelopmental disorders-Reporting a novel de novo variant of TET3.

对 32 对患有神经发育障碍的双胞胎进行分子遗传学检测和队列分析——报告 TET3 的一个新的从头变异

阅读:10
作者:Mei Lianni, Hu Chunchun, Jin Guangbo, Ge Chuanhui, Zhu Yiting, Li Dongyun, Peng Wenzhu, Li Huiping, Xu Xiu, Jiang Yan, Xu Guoliang, Xu Qiong
Neurodevelopmental disorders (NDDs) pose significant challenges due to their impact on cognitive, social and motor abilities, often rooted in genetic factors such as copy number variations (CNVs) and single nucleotide variantions (SNVs). Molecular genetic testing, advanced due to sequencing technologies, is instrumental in diagnosing NDDs, with twins offering unique perspectives in detecting novel de novo CNVs and SNVs. The study enrolled 32 pairs of twins that underwent molecular genetic testing and comprehensive clinical data collection. Additionally, we analyzed the potential deleterious effects of a novel de novo TET methylcytosine dioxygenase 3 (TET3) variant (c.4927G > A) using western blotting, immunofluorescence assay and enzymatic activity assay. Analyzing simultaneously, the overall detection yield of molecular genetic testing was 17.2% (11/64). Children with disease-related genetic variants had lower total developmental quotients (DQ) than children without disease-related genetic variants. One pair of monozygotic twins carried a novel de novo TET3 variant. Immunostaining assay revealed that while the wildtype TET3 protein was evenly distributed in the nucleus, the variant was concentrated around the nucleus. Anenzymatic assay using corresponding TET2 mutants suggested that the variant has a significantly reduced activity. Taken together, our study elaborated molecular genetic testing results of 32 pairs of twins and found that children with lower developmental levels are prone to possessing identifiable genetic variants. We reported the clinical phenotype of a pair of monozygotic twins carrying a novel de novo TET3 variant and confirmed the detrimental effects of this variant in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。