Effectors secreted by phytopathogenic bacteria can suppress ETI responses induced by avirulence effectors, thereby overcoming crop resistance. However, the detailed mechanisms remain largely unknown. We report that the effector RipD from Ralstonia solanacearum regulates plant cell death in a protein abundance-dependent manner. RipD targets Arabidopsis BPA1, which directly interacts with the key cell death negative regulator ACD11. RipD competes with ACD11 for binding to BPA1, leading to the selective degradation of BPA1 via autophagy, sparing ACD11. A lower dose of RipD promotes BPA1 degradation but leads to ACD11 accumulation, thereby inhibiting RipAA-induced cell death. Conversely, higher levels of RipD degrade both BPA1 and ACD11, resulting in autophagy-dependent cell death. Visualization of RipD delivery by R. solanacearum indicated that it reaches levels sufficient to promote ACD11 accumulation and inhibit cell death. Our study reveals a novel mechanism by which an effector inhibits ETI and, for the first time, highlights the critical role of protein abundance in its function.IMPORTANCER. solanacearum infects major economic crops, notably tomato, potato, and tobacco, leading to substantial yield reductions and economic losses. This pathogen utilizes various type III effectors to suppress host resistance, often resulting in weakened or lost resistance. However, the underlying mechanisms remain largely unknown. Here, we reveal a novel mechanism by which RipD targets the BPA1-ACD11 complex, which is involved in host immunity and cell death. RipD regulates ACD11 protein homeostasis in a dose-dependent manner by competitively binding and activating autophagy, thereby modulating plant cell death. Importantly, visualization analysis revealed that the amount of RipD secreted by R. solanacearum into host cells is sufficient to inhibit Avr effector-induced cell death. Our study highlights for the first time the critical role of effector dosage, deepening the understanding of how R. solanacearum suppresses host ETI-related cell death and providing guidance and resources for breeding bacterial wilt resistance.
A Ralstonia solanacearum effector regulates plant cell death by disrupting the homeostasis of the BPA1-ACD11 complex.
青枯菌效应蛋白通过破坏 BPA1-ACD11 复合物的稳态来调节植物细胞死亡
阅读:9
作者:Xue Bingbing, Zhou Yan, Xie Yongxiao, Huang Xiaocheng, Zhang Jinye, Zhang Yang, Zhong Wenyan, Zhao Jinjia, Zheng Dehong, Ruan Lifang
| 期刊: | mBio | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 9; 16(4):e0366524 |
| doi: | 10.1128/mbio.03665-24 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
