Circulating tumor cells as a biomarker of response to treatment in patient-derived xenograft mouse models of pancreatic adenocarcinoma.

循环肿瘤细胞作为胰腺腺癌患者来源异种移植小鼠模型治疗反应的生物标志物

阅读:8
作者:Torphy Robert J, Tignanelli Christopher J, Kamande Joyce W, Moffitt Richard A, Herrera Loeza Silvia G, Soper Steven A, Yeh Jen Jen
Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。