Fatty Acid-Rich Fraction of Hibiscus syriacus L. Alleviates Atopic Dermatitis-like Skin Lesions Mouse Model via Inflammatory Pathway Modulation: Integrative Docking and Experimental Validation.

木槿脂肪酸富集组分通过炎症通路调节缓解特应性皮炎样皮肤损伤小鼠模型:整合对接和实验验证

阅读:7
作者:Nguyen Trang Thi Minh, Park Bom, Jin Xiangji, Zheng Qiwen, Yi Gyeong-Seon, Yang Su-Jin, Yi Tae-Hoo
Atopic dermatitis (AD) remains a therapeutic challenge due to the limitations of current treatments, creating demand for safer multi-target alternatives to corticosteroids. Our integrated study establishes Hibiscus syriacus L. (H. syriacus) as a mechanistically validated solution through computational and biological validation. The fraction's two main compounds, linoleic acid and palmitic acid, exhibit favorable drug-like properties including high lipophilicity (LogP 5.2) and 87% oral absorption. Molecular docking collectively predicts comprehensive NF-κB pathway blockade. Experimental validation showed that the fraction (100 μg/mL) inhibited LPS-induced nitric oxide (NO) by 78% and TNF-α/IFN-γ-induced reactive oxygen species (ROS) by 40%, while significantly downregulating the chemokines TARC (73%) and MDC (71%). In DNCB-induced AD mice, the treatment (200 mg/kg/day) produced a 62% improvement in clinical severity scores, reduced serum IgE by 27%, decreased transepidermal water loss by 36%, and doubled skin hydration while normalizing pH levels from the alkaline to physiological range. While both treatments reduced DNCB-induced epidermal hyperplasia, H. syriacus (62.9% reduction) restored the normal thickness without pathological thinning, a critical advantage over corticosteroids that cause atrophy. This dual-action therapeutic achieves corticosteroid-level anti-inflammatory effects while restoring skin barrier integrity to normal levels and avoiding corticosteroid-associated atrophy, positioning it as a next-generation AD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。