Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel.

基于偏振的多参数鉴别的谐振光子生物传感器,每个通道均具有此功能

阅读:5
作者:Magnusson Robert, Wawro Debra, Zimmerman Shelby, Ding Yiwu
In this paper, we describe guided-mode resonance biochemical sensor technology. We briefly discuss sensor fabrication and show measured binding dynamics for example biomaterials in use in our laboratories. We then turn our attention to a particularly powerful attribute of this technology not possessed by competing methods. This attribute is the facile generation of multiple resonance peaks at an identical physical location on the sensor surface. These peaks respond uniquely to the biomolecular event, thereby enriching the data set available for event quantification. The peaks result from individual, polarization-dependent resonant leaky modes that are the foundation of this technology. Thus, by modeling the binding event and fitting to a rigorous electromagnetic formalism, we can determine individual attributes of the biolayer and its surroundings and avoid a separate reference site for background monitoring. Examples provide dual-polarization quantification of biotin binding to a silane-coated sensor as well as binding of the cancer biomarker protein calreticulin to its monoclonal IgG capture antibody. Finally, we present dual-polarization resonance response for poly (allylamine hydrochloride) binding to the sensor with corresponding results of backfitting to a simple model; this differentiates the contributions from biolayer adhesion and background changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。