Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction.

干扰素-γ诱导T84肠上皮紧密连接增加的机制

阅读:4
作者:Boivin Michel A, Roy Praveen K, Bradley Angela, Kennedy John C, Rihani Tuhama, Ma Thomas Y
Interferon-gamma (IFN-gamma) is an important proinflammatory cytokine that plays a central role in the intestinal inflammatory process of inflammatory bowel disease. IFN-gamma induced disturbance of the intestinal epithelial tight junction (TJ) barrier has been postulated to be an important mechanism contributing to intestinal inflammation. The intracellular mechanisms that mediate the IFN-gamma induced increase in intestinal TJ permeability remain unclear. The aim of this study was to examine the role of the phosphatidylinositol 3-kinase (PI3-K) pathway in the regulation of the IFN-gamma induced increase in intestinal TJ permeability using the T84 intestinal epithelial cell line. IFN-gamma caused an increase in T84 intestinal epithelial TJ permeability and depletion of TJ protein, occludin. The IFN-gamma induced increase in TJ permeability and alteration in occludin protein was associated with rapid activation of PI3-K; and inhibition of PI3-K activation prevented the IFN-gamma induced effects. IFN-gamma also caused a delayed but more prolonged activation of nuclear factor-kappaB (NF-kappaB); inhibition of NF-kappaB also prevented the increase in T84 TJ permeability and alteration in occludin expression. The IFN-gamma induced activation of NF-kappaB was mediated by a cross-talk with PI3-K pathway. In conclusion, the IFN-gamma induced increase in T84 TJ permeability and alteration in occludin protein expression were mediated by the PI3-K pathway. These results show for the first time that the IFN-gamma modulation of TJ protein and TJ barrier function is regulated by a cross-talk between PI3-K and NF-kappaB pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。