The production of nitric oxide (NO) by gamma interferon (IFN-gamma)-activated macrophages is a major effector mechanism during experimental Trypanosoma cruzi infection. In addition to IFN-gamma, chemoattractant molecules, such as platelet-activating factor (PAF) and CC chemokines, may also activate macrophages to induce NO and mediate the killing of T. cruzi in an NO-dependent manner. Here we investigated the ability of leukotriene B(4) (LTB(4)) to induce the production of NO by macrophages infected with T. cruzi in vitro and whether NO mediated LTB(4)-induced parasite killing. The activation of T. cruzi-infected but not naive murine peritoneal macrophages with LTB(4) induced the time- and concentration-dependent production of NO. In addition, low concentrations of LTB(4) acted in synergy with IFN-gamma to induce NO production. The NO produced mediated LTB(4)-induced microbicidal activity in macrophages, as demonstrated by the inhibitory effects of an inducible NO synthase inhibitor. LTB(4)-induced NO production and parasite killing were LTB(4) receptor dependent and were partially blocked by a PAF receptor antagonist. LTB(4) also induced significant tumor necrosis factor alpha (TNF-alpha) production, and blockade of TNF-alpha suppressed LTB(4)-induced NO release and parasite killing. A blockade of LTB(4) or PAF receptors partially inhibited IFN-gamma-induced NO and TNF-alpha production but not parasite killing. Finally, daily treatment of infected mice with CP-105,696 was accompanied by a significantly higher level of blood parasitemia, but not lethality, than that seen in vehicle-treated animals. In conclusion, our results suggest a role for LTB(4) during experimental T. cruzi infection. Chemoattractant molecules such as LTB(4) not only may play a major role in leukocyte migration into sites of inflammation in vivo but also, in the event of an infection, may play a relevant role in the activation of recruited leukocytes to kill the invading microorganism in an NO-dependent manner.
Leukotriene B(4) induces nitric oxide synthesis in Trypanosoma cruzi-infected murine macrophages and mediates resistance to infection.
白三烯 B(4) 可诱导锥虫感染的小鼠巨噬细胞中一氧化氮的合成,并介导对感染的抵抗力
阅读:8
作者:Talvani A, Machado F S, Santana G C, Klein A, Barcelos L, Silva J S, Teixeira M M
| 期刊: | Infection and Immunity | 影响因子: | 2.800 |
| 时间: | 2002 | 起止号: | 2002 Aug;70(8):4247-53 |
| doi: | 10.1128/IAI.70.8.4247-4253.2002 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
