Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production.

白色念珠菌和克柔念珠菌对人外周血单核细胞白细胞介素-12和γ干扰素的产生具有不同的诱导作用

阅读:6
作者:Xiong J, Kang K, Liu L, Yoshida Y, Cooper K D, Ghannoum M A
Protection against Candida infection involves both innate and acquired immune responses, and cytokines produced by monocytes during the innate response may modify the acquired immune response by T cells. We hypothesized that Candida species which differ in pathogenicity can differentially induce production of immunoregulatory cytokines by human monocytes, which in turn modify T cells for immune responses to Candida. To test this hypothesis, we examined the effects of Candida albicans and Candida krusei on immunoregulatory cytokine production by human monocytes and gamma interferon (IFN-gamma) production by peripheral blood mononuclear cells (PBMC). Purified monocytes were incubated with live or heat-killed strains of C. albicans and C. krusei at the optimal Candida/monocyte ratio of 0.5. Cytokines in the supernatants were measured by enzyme-linked immunosorbent assay. Our data demonstrated that live C. albicans and C. krusei significantly induced interleukin-10 (IL-10), monocyte chemotactic factor 1, IL-1beta, and tumor necrosis factor alpha production by monocytes relative to unstimulated monocytes. In contrast, unlike C. krusei, pathogenic live strains of C. albicans induced no or only a minimal level of IL-12. The expression of IL-12 p40 mRNA levels by reverse transcription-PCR corroborated the IL-12 protein (p70) findings. In human PBMC, human blood monocytes were the major source of both IL-10 and IL-12 production in response to C. albicans and C. krusei. Upon activation of T cells in the presence of Candida-modified monocytes and antigen-presenting cells, IL-12 production by PBMC treated with Candida organisms correlated strongly with the level of IFN-gamma production by T cells. These results indicate that the virulence of C. albicans may be related to its ability to induce the monocytic type II cytokine IL-10, with a selective inhibition of IL-12 production, which may be responsible for the observed lack of T-cell IFN-gamma and may restrain an effective type I immune response to Candida.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。