Fischer's ratio and DNA damage in hypoxemia-induced brain injury in rat model: prophylactic role of quercetin and mexamine supplementation.

费舍尔比率和缺氧血症诱导的大鼠脑损伤模型中的DNA损伤:槲皮素和美沙明补充剂的预防作用

阅读:8
作者:Kadry Mai O, Ali Hanaa
Hypoxemia brain injuries arise when the brain's oxygen supply is restricted. Brain cells gradually die and become impaired as a result of the restricted oxygen flow a diversity of signaling pathways are involved in the pathophysiology of brain damage. One of the main concerns when examining the rate of protein breakdown is the measurement of the serum amino acid ratio. Valine, leucine, and isoleucine make up branched-chain amino acids, while phenylalanine and tyrosine make up aromatic amino acids. A vital tool for assessing the severity of hypoxemia is Fischer's ratio. The goal of this article is to determine how quercetin (QUR) and/or mexamine (MEX) prevented synfat (SN)-induced brain damage in a rat models. It also aimed to elucidate the various cross-linked inflammatory pathways, DNA damage, and Fischer's ratio. Following QUR and MEX therapy, synfat-induced hypoxemia. Hemoglobin (Hb) levels were markedly reduced by synfat-intoxication, and oxidative stress and inflammatory biomarkers, including TNF-??, MDA, interleukin-6 (IL-6), and C -reactive protein (CRP), were elevated. Hemoglobin levels, oxidative stress biomarkers, and the aberrant expression of pro-inflammatory cytokines were all altered by QUR and/or MEX therapy. Similarly, the concentration of γ-aminobutyric acid, serotonine, noradrenaline, and intropin in cerebral tissue is restricted. Similarly, the COMET assay and 8-oxo-7,8-dihydro-2'-deoxyguanosine analysis (8-oxodG) demonstrated that QUR and MEX potentially altered synfat-induced brain DNA damage. The results confirmed the potential impact of this combined strategy as a powerful therapy for brain hypoxemia, concluding that treatment via QUR with MEX was superior therapy in modulating synfat-triggered cerebral injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。