Metabolomic and proteomic characterization of sng and pain phenotypes in fibromyalgia.

纤维肌痛中 sng 和疼痛表型的代谢组学和蛋白质组学特征分析

阅读:6
作者:Hsu Wei-Hsiang, Han Der-Sheng, Ku Wei-Chi, Chao Yen-Ming, Chen Chih-Cheng, Lin Yun-Lian
BACKGROUND: Fibromyalgia (FM) is characterized by chronic widespread pain. Its pathophysiological mechanisms remain poorly understood, and effective diagnosis and treatments are lacking. This study aimed to identify significantly changed biosignatures in FM and propose a novel classification for FM based on pain and soreness (sng) symptoms. METHODS: Urine and serum samples from 30 FM patients and 25 controls underwent metabolomic and proteomic profiling. RESULTS: Compared with controls, FM patients showed significant differential expression of three metabolites in urine and five metabolites and eight proteins in serum. Of them, DETP, 4-guanidinobutanoic acid, SM(d18:1/18:0), PC(20:1(11Z)/18:0), S100A7, SERPINB3, galectin-7 and LYVE1 were first reported as potential biomarkers for FM. Furthermore, lactate, 2-methylmaleate and cotinine in urine and lactate, SM(d18:1/25:1), SM(d18:1/26:1) and prostaglandin D2 (PGD2) and PCYOX1, ITIH4, PFN1, LRG1, C8G, C8A, CP, CDH5 and DBH in serum could differentiate pain- (PG) and sng-dominant groups (SG). Lactate, 2-methylmaleate, cotinine, PCYOX1, ITIH4, PFN1 and DBH have a higher level in SG. SM(d18:1/25:1), SM(d18:1/26:1), PGD2, LRG1, C8G, C8A, CP and CDH5 in SG are lower than PG. The omics results indicated disordered free radical scavenging, and lipid and amino acid metabolism networks and resulting NF-κB-dependent cytokine generation in FM. Lactate level was altered simultaneously in urine and serum and significantly higher in sng-dominant patients than others. CONCLUSIONS: In this study, we identified potential biomarkers from FM patients. The selected biomarkers could discriminate sng and pain phenotypes in FM patients. These results could help elucidate the underlying pathological mechanisms for more effective diagnosis and therapy for FM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。